

www.HVACnotebook.com

QuickCalcs-HVAC (FREE Version)

User Guide & Disclaimer

	Calculation Spreadsheets					
Feet & Inches (Math)	Mixed Air Temperature	GPM Calculations				
Percentage (Common)	Mixed Water Temperature	Water Volume Inside Pipe				
Percentage (Individual)	Ductwork Calculations	Airflow Calculations				
Percentage (Engr./Arch.)	Louver Sizing	Fan Motor HP				
Interpolation	Fan Laws	Electrical: Ohm's Law				
Unit Conversions	Pump Laws	Piping Cost Estimate				
Cooling & Heating Loads	100% Outside Air Unit	Chiller (Electric)				

This is a FREE Version where some calculations have been disabled and sheets can not be printed.

Get the Full Version of "M1-QuickCalcs-HVAC.xlsm" for only \$35 via PayPal

We can create custom calculation spreadsheets for you.

Visit www.HVACnotebook.com for more free products and information.

This pdf file contains screenshots of our QuickCalcs-HVAC.xlsm calculation spreadsheets.

Visit our website to download the actual Excel file. It is FREE!

Mix Air Temperature				
$T_{A+B} = T_A + \left[\left(\frac{V_B}{V_A + V_B} \right) \times \left(T_B - T_A \right) \right]$				
Δ.	T _A	72	F	Temperature of "A"
Α	V _A	10,000	CFM	Airflow of "A"
В	Тв	50	F	Temperature of "B"
Ь	V _B	3,000	CFM	Airflow of "B"
Mixed _{A+B}	T _{A+B} =	66.9	F	Mixed Air Temperature
MIIVER V+B	V _{A+B} =	13,000	CFM	Mixed Airflow

Please read the User Guide and Disclaimer prior to use.

DUCTWORK CALCULATIONS

Duct Airflow Calculation			
$Airflow = \frac{W \times H}{144} \times FPM$			
Duct Cross Section: Width (W) 34 Inches			
Duct Cross Section: Height (H)	24	Inches	
Area =	5.67	Sq. Ft	
Air Velocity	1,500	FPM	
Airflow =	8,500	CFM	

Duct Velocity Pressure			
$Velocity \Pr{essure} = \left(\frac{V}{4005}\right)^2$			
Air Velocity	1,500	FPM	
Velocity Pressure =	0.459	psi	

Circular Duct Air Velocity Calculation				
$AirVelocity = \frac{CFM}{\left(3.14 \times \left(\frac{Dia.}{2}\right)^2\right)/144}$				
Duct Diameter (Dia.) =	26	Inches		
Airflow (CFM)	10,000	CFM		
Air Velocity =	2,714	FPM		

Rectangular Duct Air Velocity Calculation				
AirVelocity =	AirVelocity = CFM			
$Att Velocity = \frac{Width \times Height}{144}$				
Duct Cross Section: Width (W)	Duct Cross Section: Width (W) DEMO Inches			
Duct Cross Section: Height (H)	DEMO	Inches		
Area =	DEMO	Sq. Ft		
Airflow	DEMO	CFM		
Air Velocity =	DEMO	FPM		

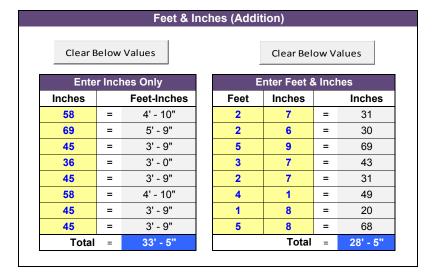
Return To Main Sheet

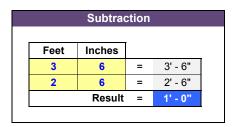
Equivalent Round Duct Size from Rect. Duct				
Dia. = $\frac{1.3 \times (W \times H)^{0.625}}{(W + H)^{0.25}}$				
Duct Cross Section: Width (W)	30	Inches		
Duct Cross Section: Height (H) 24 Inches				
Equilvalent Diameter (Dia.) = 29.29 Inches				

Duct Surface Area					
$SurfaceArea = 2(L \times W) + 2(L \times H)$					
Inches Feet					
Duct Cross Section: Width (W)	20	=	1.67		
Duct Cross Section: Height (H)	24	=	2.00		
Duct Length	96	=	8.00		
Total Surface Area = 58.67 Sq. Ft					

Get the Full Version of "QuickCalcs-HVAC.xlsm" to use all features.

The above calculations are also available in CalcSheet format: "D2 - Ductwork Surface Area, Weight and Cost Estimates.xlsx'

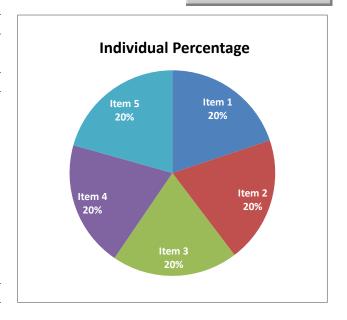

Contact us for more information. Email: hvacnotebook@yahoo.com


Please read the User Guide and Disclaimer prior to use.

Return To Main Sheet

INTERPOLATION Clear Below Values (1) (100th) 10.70 1 10 12.00 2 20 19.96 20.65 3 30 28.00 30.70 (10th) (1,000th) 10.0 10.5 0.001 0.060 19.4 20.0 0.002 0.070 30.0 0.003 30.7 0.080

MATH WITH FEET & INCHES



Multiplication					
Feet	Inches			_	
10	6	=	10' - 6"		
5	6	=	5' - 6"		
Area = 57.75 SF					

INDIVIDUAL PERCENTAGE

Individual Percentage of Total				
$Percentage = 1 - \left(\frac{Total - Value}{Total}\right)$				
Name	Value	Individual Percentage		
Item 1	25.00	19.84%		
Item 2	25.00	19.84%		
Item 3	25.00	19.84%		
Item 4	25.00 19.84%			
Item 5	26.00	20.63%		
DEMO	DEMO	DEMO		
DEMO	DEMO	DEMO		
DEMO	DEMO	DEMO		
DEMO	DEMO	DEMO		
DEMO	DEMO	DEMO		
Total = 126.00 100.00%				

Please read the User Guide and Disclaimer prior to use.

LOAD ESTIMATES

Return To Main Sheet

COOLING LOAD ESTIMATE			
Space Area	4,500	SF	
Cooling Load Estimate (SF per Ton)	350	SF/Ton	
Cooling Load =	12.9	Tons	

HEATING LOAD ESTIMATE			
Space Area	4,500	SF	
Heating Load Estimate (Btuh per SF)	40	Btuh/SF	
Heating Load =	180,000	Btuh	
Heating Load =	180.0	МВН	

The above calculations are also available in CalcSheet format: "L1 - Cooling and Heating Load Estimates.xlsx" Contact us for more information. Email: hvacnotebook@yahoo.com

i	Units	Conversion Basis	Ento	r Value			Result
	Office	Celsius = (5/9) x (Fahrenheit - 32)	180.00	Fahrenheit	_	82.22	Celsius
	Celsius <=> Fahrenheit	, , , , , , , ,			-	55.40	
es		Fahrenheit = (9/5) x Celsius + 32 Celsius = Kevin - 273.15	13.00	Celsius			Fahrenheit
Ę	Celsius <=> Kevin		300.00	Kevin	=	26.85	Celsius
era		Kevin = Celsius + 273.15	25.00	Celsius	=	298.15	Kevin
Temperatures	Fahrenheit <=> Kevin	Fahrenheit = (9/5) x (Kevin - 273.15) + 32	290.00	Kevin Fahrenheit	-	62.33	Fahrenheit
T _e		Kevin = (Fahrenheit - 32) * (5/9) + 273.15	62.33		=	290.00	Kevin
	Rankine <=> Kevin	Rankine = (9/5) x Kevin	20.00	Kevin	=	36.00	Rankine
		Kevin = (5/9) x Rankine	36.00	Rankine	=	20.00	Kevin
							1
	inch <=> cm	1 inch = 2.54 cm	1.00	inches	=	2.54	cm
		cm = inches / 2.54	1.00	cm	=	0.39	inches
	inch <=> mm	1 inch = 25.4 mm	1.00	inches	=	25.40	mm
		mm = inches / 25.4	1.00	mm	=	0.04	inches
9	feet <=> yard	1 yard = 3 feet	1.00	yard	=	3.00	feet
tan		feet = yard / 3	1.00	feet	=	0.33	yard
Distance	feet <=> meter	1 foot = 0.3048 meter	1.00	feet	=	0.3048	meter
_		1 meter = 3.28 feet	1.00	meter	=	3.28	feet
	mile <=> feet	1 mile = 5,280 feet	1.00	mile	=	5,280	feet
		feet = miles / 5,280	5,280	feet	=	1.00	mile
	mile <=> yard	1 mile = 1,760 yards	1.00	mile	=	1,760	yards
		yards = miles / 1,760	1,760	yards	=	1.00	mile
							,
	sq. ft. <=> sq. in.	1 sq. ft. = 144 sq. in.	1.00	sq. ft.	=	144.0	sq. in.
	- 4 · - 4 · · · ·	sq. in. = sq. ft / 144	1.00	sq. in.	=	0.007	sq. ft.
	sq. ft. <=> sq. meter	1 sq. ft. = 0.0929 sq. meters	1.00	sq. ft.	=	0.0929	sq. meters
Area	oqi ili 💎 oqi motor	1 sq. meter = 10.76 sq. ft.	1.00	sq. meters	=	10.76	sq. ft.
₹	sq. ft. <=> sq. cm	1 sq. ft. = 929 sq. cm	1.00	sq. ft.	=	929	sq. cm
	3q. 1t. 4=7 3q. cm	sq. cm = sq. ft. / 929	1	sq. cm	=	0.00	sq. ft.
	sq. ft. <=> sq. yards	1 sq. ft. = 0.1111 sq. yards	1.00	sq. ft	=	0.1111	sq. yards
	3q. 1c. 4-2 3q. yarus	1 sq. yard = 9 sq. ft.	1.00	sq. yards	=	9.00	sq. ft.
	fpm <=> mph	1 ft/min = 0.0114 mph	1.0	ft/min	=	0.0114	mph
	ipiii <=> ilipii	1 mph = 87.7 fpm	1.00	mph	=	87.7	ft/min
	mph <=> fps	1 mph = 1.467 ft/sec	1.0	mph	=	1.467	ft/sec
	IIIpii <=> ips	1 fps = 0.682 mph	1.0	ft/sec	=	0.682	mph
>		1 meter/sec = 2.237 mph	1.0	meter/sec	=	2.237	mph
Veolocity	mps <=> mph	1 mph = 0.447 meter/sec	1.0	mph	=	0.447	meter/sec
o lo	fno <=> m/o	1 ft/s = 0.3048 m/s	1.0	ft/s	=	0.3048	m/s
>	fps <=> m/s	1 m/s = 3.2808 ft/s	1.0	m/s	=	3.2808	ft/s
	lessellas em mala	1 km/hr = 0.2778 m/s	1.0	km/hr	=	0.2778	m/s
	km/hr <=> m/s	1 m/s = 3.5997 km/hr	1.0	m/s	=	3.5997	km/hr
		1 meter/sec = 196.85 ft/min	1.0	meter/sec	=	196.85	ft/min
	mps <=> fpm	fpm = meter/sec / 196.85	1.0	ft/min	=	0.005	meter/sec
				•			
	atus des mala	1 atm = 14.7 psia	1.00	atm	=	14.70	psia
	atm <=> psia	psia = atm / 14.7	1.00	psia	=	0.07	atm
	atus 400 maf	1 atm = 2,116.2 lb/ft ²	1.00	atm	=	2,116.2	lb/ft ²
	atm <=> psf	lb/ft = atm / 2,116.2	1.00	lb/ft ²	=	0.00	atm
	otm <=> in 11=	1 atm = 29.92 in. Hg	1.00	atm	=	29.92	in. Hg
	atm <=> in. Hg	in. Hg = atm / 29.92	1.00	in. Hg	=	0.03	atm
ø	in. water <=> in. mercury	1 in. water = 0.0739 in mercury	1.00	in. water	=	0.0739	in. mercury
sur	water \=> iii. mercury	1 in. mercury = 13.53 in. water	1.00	in. mercury	=	13.53	in. water
Pressure	in Ha <=> in water	1 in. Hg = 12.8 in water	1.00	in. Hg	=	12.80	in. water
Δ.	in. Hg <=> in. water	1 in. water = 0.0781 in. Hg	1.00	in. water	=	0.0781	in. Hg
	ft. H ₂ O <=> psi	1 ft.H ₂ O = 0.4335 psi	1.00	ft. H ₂ 0	=	0.4335	psi
	n. 1120 <=> psi	1 psi = 2.31 ft. H ₂ 0	1.00	psi	=	2.31	ft. H ₂ 0
	ft. H ₂ O <=> psf	1 ft.H ₂ O = 62.43 lbs./sq.ft.	1.00	ft. H ₂ 0	=	62.43	lbs/sq.ft
	11. 1120 S-c psi	psf = ft. H ₂ 0 / 62.43	1.00	lbs/sq.ft	=	0.02	ft. H ₂ 0
	mm Hg <=> psi	1 mm Hg = 0.01934 lb/in ²	1.00	mm Hg	=	0.01934	lb/in2
	min rig <-> psi	1 lb/in2 = 51.71 mm Hg	1.00	lb/in2	=	51.71	mm Hg
	day out barre	1 day = 24 hours	1.00	day	=	24.0	hours
	day <=> hours	hours = days / 24	24.00	hours	=	1.000	day
	day <=>inte-s	1 day = 1,440 minutes	1.00	day	=	1,440	minutes
	day <=> minutes	minutes = days / 1,440	1.00	minutes	=	0.00	day
	hour	1 hour = 60 minutes	1.00	hour	=	60	minutes
ae	hour <=> minutes	minutes = hours / 60	1.00	minutes	=	0.02	hour
Time		1 minute = 60 seconds	1.00	minutes	=	60	seconds
	minutes <=> seconds	seconds = minutes / 60	1.00	seconds	=	0.02	minutes
		1 year = 12 months	1.00	year	=	12	months
	year <=> month	months = years / 12	1.00	months	=	0.08	years
		1 year = 52 weeks	1.00	year	=	52	weeks
	year <=> weeks	weeks = years / 52	52.00	weeks	=	1.00	years
		. ,					

Water Volume Inside Pipe			
$Volume = 0.0034 \times (Dia.)^2 \times L$			
Pipe Inside Diameter (Dia.)	2	Inches	
Pipe Length	50	Feet	
ripe Lengin	6	Inches	
Pipe Length in Inches (L) =	606	Inches	
Water Volume =	8.24	Gallons	

The above calculations are also available in CalcSheet format: "P2 - Water Volume Inside Piping Estimate.xlsx" Contact us for more information. Email: hvacnotebook@yahoo.com

$\times SP \times Sp0$	~ <u>"</u>			
FanEfficie	$BHP = \frac{CFM \times SP \times SpGr}{6356 \times FanEfficiency}$			
$MotorHP = \frac{BHP}{Motor / DriveEfficiency}$				
Fan Motor HP				
10,000	CFM			
2.40	inches			
1.00				
60%	Percent			
6.29	ВНР			
85%				
7.40	НР			
	/ DriveEff or HP 10,000 2.40 1.00 60% 6.29 85%			

The above calculations are also available in CalcSheet format: "EQ1 - Fan Motor HP Calculation.xlsx" Contact us for more information. Email: hvacnotebook@yahoo.com

PERCENTAGE

Percentage Change			
$Percent = \frac{\left Original - New\right }{Original} \times 100$			
Original Number	150		
New Number	100		
Percent Decrease =	33.3%		
Change from 150 to 100 is a 33% Decrease			

Part of Total Percentage (1)				
$Percent = \frac{Part}{Total} \times 100$				
Part Number	3			
Total Number	30			
Percent =	10.0%			
3 out of 30 is 10%				

Add A Percentage To A Number			
$New = Original + (Original \times Percent)$			
Percent	10%		
Original Number	150		
New Number =	165		
Add 10% To 150 = 165			
150 Plus 10% = 165			

Percentage Difference			
$Percent = \frac{ A - B }{((A + B)/2)} \times 100$			
Number A	100		
Number B	50		
Percent Difference =	66.7%		
Difference between 100 and 50 = 67%			
2			

Percentage Greater or Less Than			
$Percent = \frac{(A-B)}{B} \times 100$			
Number A	10		
Number B	25		
Percent =	60.0%		
10 is 60% Less than 25			

Part of Total Percentage (2)		
$Total = \frac{Part}{Percent}$	×100	
Part Number	25	
Percentage	50%	
Total Number =	50	
25 is 50% of 50		

Subtract A Percentage From A Number		
(Percent)		
10%		
150		
135		
Subtract 10% From 150 = 135		
150 Minus 10% = 135		

Percentage of a Number			
$New = Percent \times Original$			
30%			
100			
30			
30% of 100 is 30			

Percentage Off (1)	
Original Number	100
Percentage Off	25%
New Number =	75
25% off 100 is 75	

Percentage Off (2)		
Original Number	100	
New Number 25		
Percentage Off =	75.0%	
From 100 To 25 is 75% off		

GPM CALCULATIONS

Chilled Water GPM Calc.		
$GPM = \frac{Tons \times 24}{\Delta T}$		
Cooling Load (Tons)	120	Tons
Water ∆T	10	F
GPM (Evaporator) =	288	GPM

Hot Water GPM Calc.		
$GPM = \frac{Btu / hr}{500 \times \Delta T}$		
Heating Load	50,000	Btu/hr
Water ∆T	20	F
GPM =	5.0	GPM

Cooling Capacity Calc.		
$Btu / hr = 500 \times \Delta T \times GPM$		
Water Flow (GPM)	288	GPM
Water ∆T	10	F
Cooling Capacity (Btu/hr) =	1,440,000	Btu/hr
Cooling Capacity (Tons) =	120.0	Tons

Heating Capacity Calc.		
$Btu / hr = 500 \times \Delta T \times GPM$		
Water Flow (GPM)	288	GPM
Water ∆T	20	F
Heating Capacity (Btu/hr) =	2,880,000	Btu/hr
Heating Capacity (MBH) =	2,880	MBH

FAN LAWS

Return To Main Sheet

Δ.
┰
ᇂ
۳
3
ā
Ž

New BHP From Change in CFM		
$BHP_2 = \left(\frac{CFM_2}{CFM_1}\right)^3 \times BHP_1$		
CFM ₁	10,000	
BHP ₁	10.00	
CFM ₂	7,000	
BHP ₂ =	3.43	
BHP ₂ =	3.43	

New BHP From Change in RPM		
$BHP_2 = \left(\frac{RPM_2}{RPM_1}\right)^3 \times BHP_1$		
RPM₁	850	

10.00

800

8.34

BHP₁

 RPM_2

BHP₂=

New BHP From Change in SP		
$BHP_2 = \left(\frac{SP_2}{SP_1}\right)^{1.5} \times BHP_1$		
SP ₁	2.40	
BHP ₁	10.00	
SP ₂	2.00	
BHP ₂ =	7.61	

New CFM

New CFM From Change in BHP		
$CFM_2 = \sqrt[3]{\frac{BHP_2}{BHP_1}} \times CFM_1$		
BHP ₁	10.00	
CFM ₁	10,000.00	
BHP ₂	3.43	
CFM ₂ =	7,000	

New CFM From Change in RPM		
$CFM_2 = \frac{RPM_2}{RPM_1} \times CFM_1$		
RPM ₁	850	
CFM ₁	10,000	
RPM ₂	680	
CFM ₂ =	8,000	

New CFM From Change in SP		
$CFM_2 = \sqrt{\frac{SP_2}{SP_1}} \times CFM_1$		
SP ₁	2.40	
CFM ₁	10,000	
SP ₂	1.54	
CFM ₂ =	8,010	

New SP

New SP From Change in CFM		
$SP_2 = \left(\frac{CFM_2}{CFM_1}\right)^2 \times SP_1$		
CFM ₁	DEMO	
SP ₁	DEMO	
CFM ₂	DEMO	
SP ₂ =	SP ₂ = N/A	

New SP From Change in RPM		
$SP_2 = \left(\frac{RPM_2}{RPM_1}\right)^2 \times SP_1$		
RPM₁	DEMO	
SP ₁	DEMO	
RPM ₂	DEMO	
SP ₂ =	N/A	

New SP From Change in BHP		
$SP_2 = 1.5 \frac{BHP_2}{BHP_1} \times SP_1$		
BHP ₁	DEMO	
SP ₁	DEMO	
BHP ₂	DEMO	
SP ₂ =	N/A	

New RPM

New RPM From Change in CFM $RPM_2 = \frac{CFM_2}{CFM_1} \times RPM_1$			
CFM ₁ DEMO			
RPM₁	PM ₁ DEMO		
CFM ₂	CFM ₂ DEMO		
RPM ₂ = N/A			

New RPM From Change in SP		
$RPM_2 = \sqrt{\frac{SP_2}{SP_1}} \times RPM_1$		
SP ₁	DEMO	
RPM₁	DEMO	
SP ₂	DEMO	
RPM ₂ =	N/A	

New RPM From Change in BHP			
$RPM_2 = \sqrt[3]{\frac{BHP_2}{BHP_1}} \times RPM_1$			
BHP ₁	DEMO		
RPM ₁ DEMO			
BHP ₂ DEMO			
RPM ₂ =	N/A		

Get the Full Version of "M1-QuickCalcs-HVAC.xlsm" to use all features.

The above calculations are also available in CalcSheet format: "EQ5 - Fan Laws.xlsx"

Contact us for more information. Email: hvacnotebook@yahoo.com

AIRFLOW	CALCULATION

Room Area	170	SF
Height	9	ft
	6	Inches
Room Volume =	1,615	CF

Airflow Calc. Based on CFM/SF			
$Airflow = CFM / SF \times SF$			
Design Flow/Area 1.00 CFM/SF			
Design Airflow =	170	CFM	

Airflow Calc. Based on ACH			
$Airflow = \left(\frac{ACH}{60}\right) \times CF$			
Design ACH 6.0 ACH			
Design Airflow = 162 CFM			

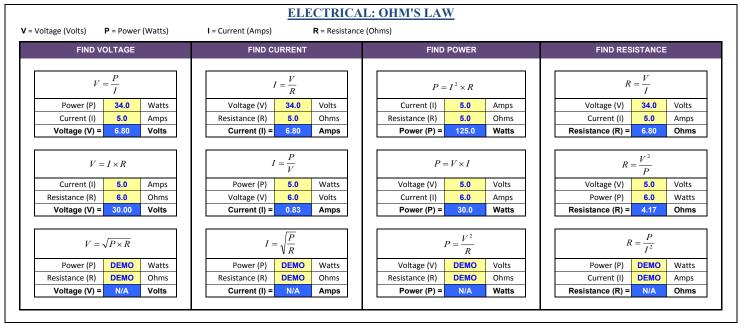
PRESSURIZATION

Negative Pressurization		
Supply Air	8,000	CFM
Percent Negative Pressure	10%	Percent
Required Exhaust Air =	8,800	CFM

Positive Pressurization		
Total Exhaust Air	8,000	CFM
Percent Positive Pressure	10%	Percent
Required Outside Air =	8,800	CFM

Percent Negative Pressurization			
Supply Air	8,000	CFM	
Exhaust Air	8,800	CFM	
Percent Negative Pressure =	-10%	Percent	

Percent Positive Pressurization		
Outside Air	1,000	CFM
Exhaust Air	800	CFM
Percent Positive Pressure =	20%	Percent


LOUVER SIZING

Return To Main Sheet

Louver Size Based on Velocity & Free Area			
Airflow	40,000	CFM	
Face Velocity	500	FPM	
Dogwined Free Area -	80.00	Sq. Ft.	
Required Free Area =	11,520	Sq. Inches	
Louver Free Area (%)	50%	Design	
Louver Face (Total) Area =	160.00	Sq. Ft.	
Louvel Face (Fotal) Alea =	23,040	Sq. Inches	
Louver Width	45	Inches	
Louver Height =	512	Inches	
Required Louver Face Area =	3' - 9" V	V x 42' - 8" H	

Air Velocity Based on Airflow & Free Area			
Airflow	40,000	CFM	
Louver Face Area	100	Sq. Ft.	
Louver Free Area (%)	50%	Design	
Resulted Free Area =	50.00	Sq. Ft.	
Resulted Air Velocity =	800	FPM	

The above calculations are also available in CalcSheet format: "A2 - Louver Sizing Using FPM.xlsx' Contact us for more information. Email: hvacnotebook@yahoo.com

Get the Full Version of "M1-QuickCalcs-HVAC.xlsm" to use all features. Contact us for more information. Email: hvacnotebook@yahoo.com

CHILLER - ELECTRIC

CHILLED WATER FLOW			
Cooling Load	120	Tons	
CHW Supply Temperature	45	F	
CHW Return Temperature	55	F	
Required CHW flow (GPM) =	288.0	GPM	

CONDENSER WATER FLOW			
Cooling Load	DEMO	Tons	
CW Supply Temperature	DEMO	F	
CW Return Temperature	DEMO	F	
Required CW flow (GPM) =	DEMO	GPM	

GIVEN CHILLER COP				
COP = 4.20 From Manufacturer				
EER =	14.33	EER = COP x 3.412		
kW/Ton =	0.837	kW/Ton = 3.516 / COP		

GIVEN CHILLER EER				
EER = 14.33 From Manufacturer				
COP =	4.20	COP = EER / 3.412		
kW/Ton =	0.837	kW/Ton = 3.516 / COP		

GIVEN CHILLER KW/TON					
kW/Ton = 0.837 From Manufacturer					
EER =	14.34	EER = 12 / kW/Ton			
COP =	4.20	COP = EER / 3.412			

Get the Full Version of "M1-QuickCalcs-HVAC.xlsm" to use all features. Contact us for more information. Email: hvacnotebook@yahoo.com

100% OUTSIDE AIR UNIT

HEATING COIL LOAD ESTIMA	NTE	
Outside Air Temperature Dry Bulb	11.0	F
Heating Coil Leaving Air Temperature Dry Bulb	95.0	F
Unit Airflow	5,000	CFM
Total Btu/hr =	453,600	Btu/hr
Total Heating Load =	454	MBH

COOLING COIL LOAD ESTIMA	ATE	
Outside Air Temperature Dry Bulb	DEMO	F
Outside Air Temperature Wet Bulb	DEMO	F
Outside Air Temperature Enthalpy	DEMO	
Cooling Coil Leaving Air Temperature Dry Bulb	DEMO	F
Cooling Coil Leaving Air Temperature Wet Bulb	DEMO	F
Cooling Coil Leaving Air Temperature Enthalpy	DEMO	
Unit Airflow	DEMO	CFM
Total Btu/hr =	DEMO	Btu/hr
Total Cooling Load =	N/A	Tons

Get the Full Version of "M1-QuickCalcs-HVAC.xlsm" to use all features.

The above calculations are also available in CalcSheet format: "L8 - 100% Outside Air Unit Coils Sizing.xlsx"

Contact us for more information. Email: hvacnotebook@yahoo.com

tem#	Tag	Item	Quantity	Unit	Pipe Unit Price	Item Unit Price	Item Total	Assumption / Remarks
1	A-B	4" dia. Sch 40 Welded	10	LF	\$36.22		\$362.20	Main from header
2	A-B	4" Valve	1	EA		\$200.00	\$200.00	
3	B-C	4" dia. Sch 40 Welded	20	LF	\$36.22		\$724.40	Segment B-C
4	C-D	3" dia. Sch 40 Welded	2	LF	\$29.46		\$58.92	
5	D-E	3" Valve	1	EA		\$150.00	\$150.00	Isolation Valves
6	E-F	3" dia. Sch 40 Welded	6	LF	\$29.46		\$176.76	
7	F-G	2-1/2" dia. Sch 40 Welded	20	LF	\$25.29		\$505.80	
8	G-H	2" dia. Sch 40 Welded	10	LF	\$19.32		\$193.20	
9								
10								
						Subtotal =	\$2,371.28	
					Allowance:	25%	\$592.82	
					GRAN	D TOTAL =	\$2,964.10	

The above calculations are also available in CalcSheet format: "P1 - Piping Cost Estimate.xlsx"

We can custom create a Piping Cost Estimate sheet for you. (Copper, Stainless Steel, Etc.)

Contact us for more information. Email: hvacnotebook@yahoo.com

User Guide

- 1) To enter pipe in Item column, pick pipe diameter from pull-down list than enter length in Quantity column. Pipe Unit Price (Data from Unit Price Table) and Item Total will automatically appear.
- 2) To enter a non-pipe item, type a name in the Item column and than enter its unit price in Item Unit Price column. Item Total will automatically appear.
- 3) If both pipe size is selected and Item Unit Price is entered, Item Total will be highlighted red to indicate an error. Either pipe or item can be on one line. To fix, delete value in Item Unit Price or type an item in Item column.

Unit Price Table (Per LF)				
Welded, Sch 40 Black Steel with yoke & roll hanger, 10' O.C.				
Item	Materials	Labor	Equipment	Total
1" dia. Sch 40 Welded	\$3.70	\$7.25	\$0.60	\$11.55
1-1/4" dia. Sch 40 Welded	\$4.93	\$8.00	\$0.67	\$13.60
1-1/2" dia. Sch 40 Welded	\$5.65	\$8.85	\$0.74	\$15.24
2" dia. Sch 40 Welded	\$7.40	\$11.00	\$0.92	\$19.32
2-1/2" dia. Sch 40 Welded	\$9.80	\$14.30	\$1.19	\$25.29
3" dia. Sch 40 Welded	\$12.50	\$15.65	\$1.31	\$29.46
3-1/2" dia. Sch 40 Welded	\$13.90	\$17.25	\$1.44	\$32.59
4" dia. Sch 40 Welded	\$16.50	\$18.20	\$1.52	\$36.22
5" dia. Sch 40 Welded	\$24.00	\$21.00	\$1.76	\$46.76
6" dia. Sch 40 Welded	\$30.00	\$29.00	\$1.56	\$60.56
8" dia. Sch 40 Welded	\$47.00	\$36.00	\$1.94	\$84.94
10" dia. Sch 40 Welded	\$88.00	\$43.50	\$2.34	\$133.84
12" dia. Sch 40 Welded	\$122.00	\$55.00	\$2.96	\$179.96
14" dia. Sch 40 Welded	\$85.00	\$69.50	\$3.74	\$158.24
16" dia. Sch 40 Welded	\$114.00	\$80.50	\$4.32	\$198.82
18" dia. Sch 40 Welded	\$120.00	\$95.00	\$5.10	\$220.10
20" dia. Sch 40 Welded	\$146.00	\$116.00	\$6.25	\$268.25
24" Dia. Sch 40 Pipe	\$186.00	\$131.00	\$7.00	\$324.00
Add Others				\$0.00